The Academic Society (TAS)

The Academic Society Journal (TASJ)

©2019 por The Academic Society (TAJ)

Classificação automática de crises epilépticas e crises não epilépticas psicogênicas utilizando aprendizado de máquina

Santos KR, Pires R

RESUMO

Este artigo aborda o estudo e aplicação do classificador do tipo Máquina de Vetores de Suporte (SVM) na diferenciação entre crises epilépticas e crises não epilépticas psicogênicas (CNEP). Um banco de dados com exames de eletroencefalograma (EEG) contendo 117 crises epilépticas e 42 crises não epilépticas psicogênicas foram coletados na Unidade de Videoeletroencefalografia do Instituto de Psiquiatria do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IPq-HCFMUSP). Baseando-se nos registros dos 18 canais do EEG durante cada crise, foram gerados vetores de características com quatro atributos: média, desvio padrão, valor máximo e valor mínimo. Estes vetores de características foram utilizados na fase de treinamento e avaliação do classificador SVM em quatro configurações de kernels disponíveis: Linear, Polinomial, Função de Base Radial (RBF) e Sigmoide. Como resultado, o kernel Polinomial  apresentou melhor desempenho com a taxa de acerto (acurácia) de 78,7%, sensibilidade de 100% e especificidade de 2,4%. Com base nos vetores de características utilizados, foi possível concluir que o classificador SVM é adequado para a detecção de crises epilépticas, sendo inadequado para os casos de CNEP. Estes resultados podem ser otimizados com a aplicação da Transformada de Fourier ou Transformada Wavelet no tratamento prévio dos sinais de EEG, além da geração de vetores de características com atributos distintos.

Palavras-chaves: Crise epiléptica, CNEP, EEG, SVM.